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Mars Cube One (MarCO)
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Mars Cube One (MarCO)
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• Challenge: bent pipe communication at 1.04AU from Earth –
i.e. receive and transmit at the same data rate (8kbps) 

• Main requirements:

– Stowage volume: 12.5mm × 210mm × 345mm

– Gain of at least 28dBic

• Required aperture: 335mm × 587mm

• Solution: foldable reflectarrray



Mars Cube One (MarCO)
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R. E. Hodges, N. Chahat, D. J. Hoppe, J. D. Vacchione, “The Mars Cube One deployable high gain cubeSat antenna,” IEEE Antennas Propag. Mag., vol. 59, no. 2, pp. 39-49,

April 2017.

Custom made hinges

• Reflectarray:

Panel configuration

Panel LayoutReflectarray optics



Mars Cube One (MarCO)
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• Reflectarray feed:



Mars Cube One (MarCO)
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• Reflectarray feed:

Gain (dBi) Axial ratio (dB)

Frequency 
(GHz)

Calculated Measured Calculated Measured

8.375 13.8 13.90 2.0 2.76
8.400 13.96 13.96 1.2 1.53
8.425 13.97 13.93 0.3 0.55
8.450 13.87 13.92 1.6 1.33
8.475 13.78 13.87 3.0 2.60

 Excellent agreement between calculation and 
measurements

 Measured results are within 0.1dB
 AR is excellent across the entire frequency band



Mars Cube One (MarCO)
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• Measured reflectarray performance:

R. E. Hodges, N. Chahat, D. J. Hoppe, J. D. Vacchione, “The Mars Cube One deployable high gain cubeSat antenna,” IEEE Antennas Propag. Mag., vol. 59, no. 2, pp. 39-49,

April 2017.

 Excellent agreement between calculation and measurements
 Meets all project requirements
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Raincube – Radar in a CubeSat
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• First radar in a CubeSat (6U)
‐ 3U for the entire radar + antenna
‐ 1.5U for the folded antenna

• Ka-band antenna operating at 35.75GHz

• Linear polarization

• Efficiency of 55%

• Cassegrain antenna: 
‐ 40 OPI mesh
‐ 30 ribs 
‐ Uses a telescoping waveguide
‐ Subreflector is held by three struts
‐ Achieved surface accuracy of ±0.22mm
‐ Surface aberration compensated by optimizing the subereflector

N. Chahat, R. E. Hodges, J. Sauder, M. Thomson, E. Peral and Y. Rahmat-Samii, "CubeSat Deployable Ka-Band Mesh 
Reflector Antenna Development for Earth Science Missions," IEEE Trans. Antennas & Propag., vol. 64, no. 6, pp. 2083-
2093, June 2016.



Raincube – Radar in a CubeSat
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• Antenna description:

N. Chahat, R. E. Hodges, J. Sauder, M. Thomson, E. Peral and Y. Rahmat-Samii, "CubeSat Deployable Ka-Band Mesh Reflector 
Antenna Development for Earth Science Missions," IEEE Trans. Antennas & Propag., vol. 64, no. 6, pp. 2083-2093, June 2016.



Raincube – Radar in a CubeSat
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• Ticra GRASP is employed:
– MoM for the feed, struts, and subreflector.

– PO + PTD for the main reflector

– The horn is a BoR object

– The 3 struts are represented using a tabulated mesh

– Mesh is represented by a Wire mesh object

• The reflector is represented by an unfurlable

surface with 30 ribs, and a focal length of 0.25m

• Rim is defined using tabulated rim

• CST MWS is used to calculated the feed 

insertion loss and S11.

• The subreflector was redesigned to 

compensate for the surface aberration due to 

the limited number of ribs. See to the right the 

measurement of the surface mesh.

N. Chahat, R. E. Hodges, J. Sauder, M. Thomson, E. Peral and Y. Rahmat-Samii, "CubeSat Deployable Ka-Band Mesh Reflector 
Antenna Development for Earth Science Missions," IEEE Trans. Antennas & Propag., vol. 64, no. 6, pp. 2083-2093, June 2016.



Raincube – Radar in a CubeSat
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• Calculated vs Measured results
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Measured

Calculated

Directivity (dBi) Gain (dBi) Loss (dB)* Peak SLL (dB)

Calc. Meas. Calc. Meas. Calc. Meas. Calc. Meas.

Solid 43.6 43.55 43.3 43.24 0.3 0.31 -17.45 -17.75

Mesh - 43.28 42.61 42.48 - 0.8 -16.8 -18.33

N. Chahat, R. E. Hodges, J. Sauder, M. Thomson, E. Peral and Y. Rahmat-Samii, "CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for 
Earth Science Missions," IEEE Trans. Antennas & Propag., vol. 64, no. 6, pp. 2083-2093, June 2016.
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OMERA
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• On-going JPL’s technology development

• Largest Ka-band deployable antenna for 6U CubeSat

• Frequency: 35.75GHz

• Polarization: linear

• Dimensions: 1049.2mm × 922.5mm 

• Deployable reflectarray antenna with 14 deployable panels

• Panel layout:

• Adjustable custom-made hinges to meet the deployment accuracy of ±0.04degree



OMERA
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• Characterization of feed RF performance with its three telescoping waveguides
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Calculation

Measurement
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Calculation

Measurement

Directivity
(dBi)

Gain (dBi)

Calc. 20.82 20.52

Meas. 20.95 20.4



OMERA
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• Fixed reflectarray to demonstrate the RF design (size: 98.4 x 81.8cm)
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Calculation

Measurement

Directivity (dBi) Gain (dBi) Loss (dB)* Efficiency (%)

Calc. Meas. Calc. Meas. Calc. Meas. Calc. Meas.

Fixed 49.28 49.27 48.31 48.5 0.97 0.77 47.10 49.20



OMERA
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• Calculated performance of the deployable reflectarray

• Directivity: 51.6dBi

• Gain: 47.75dBi

• Efficiency: 41.4%

Gain (dBi) Loss (dB)

Ideal directivity 51.58 -

Spillover 50.67 0.91

Taper 49.95 0.72

Blockage 49.67 0.28

Struts 49.27 0.4

Gap loss 49.12 0.15

Patch dielectric / conductivity loss 48.87 0.25

Surface accuracy (±0.2mm)* 48.47 0.4

Angle deployment accuracy 48.14 0.33

Feed loss / telescoping waveguide / 

transition
47.84 0.3

Feed mismatch (RL=17dB) 47.75 0.09

Overall performance 47.75 3.75



OMERA
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• Panel deployment demonstration

• The test is made using aluminum panels and only one side is tested

• Accurate deployment will be made using the reflectarray panels and 
measurements of surface accuracy will be made. 

• The hinges can be adjusted to obtain requested surface flatness

• Feed deployment demonstration

• The feed uses three telescoping waveguide

• The horn is a multiflare horn

• The subreflector is maintained in place using three struts

• The deployment is performed using two tapes controlled by a 
motorized system

• On-going exciting work!!
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SWOT 
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• SWOT telecommunication scheme uses dual polarization link 
(RHCP and LHCP) within 8.025-8.4GHz

• The crowded nadir deck causes multipath and cross-
polarization loss

• We designed an antenna to adequately mitigate cross-
polarization and multipath loss
 Excellent XPD (>20dB) at 60degree off-boresight is 

required to minimize cross-polarization loss
 Rapid roll-off is required to mitigate multipath (backward 

radiation <-15dB)
• Solution is an in-house choke ring horn antenna
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• Choke ring horn antenna RF performance in free space:
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 The performance were first 
optimized in free space in terms of 
reflection coefficient and radiation 
pattern (gain and XPD)

 Excellent agreement between 
calculation and simulation was 
obtained.



SWOT 
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• Choke ring horn antenna RF performance on the Nadir deck:

f = 8.025GHz to 8.4GHz

 The performance were first verified on the 
spacecraft to validate multipath mitigation using 
MoM MLFMM. 

 Performance over temperature range were also 
assessed analytically.

 Gain is very stable (~±0.3dB). XPD requirement is 
met.

GRASP model of the nadir deck
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Mars Helicopter (mission concept)
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 Nominal flights
• 2-3 minute duration
• 600 meter range
• 40 meter above ground
• Up to one flight per sol

 High-resolution colors images of terrain
 Helicopter

• Rotor blades: 1.1meter diameter
• Blade speed: 2600 rpm (vs 400 to 650 rpm on Earth)
• Chassis: 14cm × 14cm × 14cm
• Max mass: ~1.4kg
• Power ~220W (solar cells)

 Fully autonomous: 
• Using gyroscope accelerometer, a camera, an altimeter, and on-board 

computer

 Telecommunication:
• Transmit data from helicopter to interface box on Rover
• During flight but primarily while landed



Mars Helicopter (mission concept)
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Tx commands
Rx pictures

Rx commands
Tx pictures

• Frequency: 914MHz



Mars Helicopter (mission concept)
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Mars Helicopter (mission concept)
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• Antenna on Helicopter:
HBA radiation pattern 

Helicopter antenna on its solar panel

425 mm

165mm

Helicopter antenna on its solar panel (includes 
blades)

Blade angle 90° Blade angle 45°

x

z

θh

(No blades)

θh θh

Antenna design

 The blades are made of carbon fiber and are therefore reflective surfaces.

 The cross-polarization component varies as the blades rotates. This needs to 
be taken into account as it will affect the polarization loss.



Mars Helicopter (mission concept)
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θ

Antenna design

Antenna

Antenna on M2020 Rover Coordinate system

• Antenna on Rover:

Helicopter Base Station Antenna (HBA) radiation pattern 

Interpretation of results:
• Shadowing effects
• Multipath (reflections)
• Suffers from a very small ground plane
• Larger ground plane and/or location would improve the result

Potential candidate



Mars Helicopter (mission concept)
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Propagation loss:
The permittivity of the Mars surface is well known but Bullington has shown that for a large distance and a flat surface, the propagation, 
between two antennas at heights ht and hr, is independent from the ground permittivity. The total path loss for a surface communications link 
can be calculated as: dhhdL rtFGFG 101010 log40)(log20)(log10  

K. Bullington, “Radio Propagation Fundamentals,” The Bell System Technical Journal, Vol. XXXVI, no. 3, May 1937.

Validation:

Next step:
Measuring the link using a Rover Mockup and Helicopter using the EM antennas and radios. Shadowing from the Rover will be accounted for.



Mars Helicopter (mission concept)
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Map coverage assuming min, mean, max polarization loss with blade rotating.
The math is done for all azimuth angles around the helicopter. 
These results were obtained using Bullington with ht=0.48m and hr=1.23m.

Received power of >-94dBm  250kbps (no margin) – 40kbps (8dB  margin)

Received power of [-102, -94] dBm 40kbps (no  margin)

Rover
x

z

θh

Azimuth angle θh = [0°-359°]

Link geometry

Rover Rover Rover

Propagation Link while helicopter is flying:



0.25km

1.0 km

Mars Helicopter (mission concept)
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Map coverage assuming min, mean, max polarization loss with blade rotating.
The math is done for all azimuth angles around the helicopter. 
These results were obtained using Bullington with ht=10m, hr=1.23m, and Req = [0.25 - 1] km.

Rover
x

z

θh

Azimuth angle θh = [0°-359°]

Link geometry

Rover Rover Rover

Propagation Link while helicopter is flying:

Received power of >-94dBm  250kbps

Received power of [-102, -94] dBm 40kbps

No link
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Europa Lander (mission concept)
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Europa Lander (mission concept)
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New antenna concept:
• Meeting the drastic stowage volume constraints requiring the antenna to be flat
• Mostly made of aluminum to survive harsh environment (high radiation and wide 

range of temperature)
• Air strip line for high efficiency (>80%)
• Scalable design
• The building bloc is a 8x8 patch array
• 16x16 patch array consists of 4 building bloc interconnected by waveguides.

16x16 patch array 32x32 patch array



Europa Lander (mission concept)
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Antenna demonstration:
• Single feed element covering both Uplink (7.145-7.19GHz) and Downlink (8.4-8.45GHz) DSN bands with RHCP polarization
• The radiating element has a single-fed point 
• The building bloc (8x8 patch array) is shown below:

8×8 patch array

Single Element



Europa Lander (mission concept)
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Antenna demonstration:

Directivity (dBi) Gain (dBi)

CST MWS HFSS CST MWS HFSS

7.19 GHz 24.8 24.9 24.6 24.8

8.425 GHz 25.9 26.0 25.6 25.9
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 Fabrication on-going
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Polarization loss between two linear polarization: 
• Both antenna shall ideally be vertically polarized

• Not in practice: shadowing, multiple reflection, disturb the antenna radiation
• Non perfectly linearly polarized antenna suffers from polarization loss

• Lets assume a receive antenna having the linear components:

Note that in our coordinate system, if perfectly vertically polarized: ρL1∞.

• The incident wave on the antenna is given by 

Not that in our coordinate system, if perfectly vertically polarized: ρL2∞.

• The polarization loss is express as:

where δ1 and δ2 are the phases of the polarization ratios of the receive antenna and the incident wave.  we assume the 
worse case with δ1-δ2 = π, best case δ1-δ2 = 0.
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